Attitude Determination of Photovoltaic Device by Means of Differential Absorption Imaging

Author:

Asaba Kaoru1,Miyamoto Tomoyuki1ORCID

Affiliation:

1. Laboratory for Future Interdisciplinary Research of Science and Technology (FIRST), Institute of Innovative Research (IIR), Tokyo Institute of Technology, R2-39, 4259 Nagatsuta, Midori-ku, Yokohama 226-8503, Japan

Abstract

Future wireless power transmission will cover power levels up to kilowatts or more and transmission distances up to the scale of kilometers. With its narrow beam divergence angle, optical wireless power transmission (OWPT) is a promising candidate for such system implementations. In the operation of OWPT, it is necessary to estimate the position, direction (azimuth, elevation), and attitude of the target photovoltaic device before the power supply. The authors have proposed the detection of targets using differential absorption imaging and positioning with a combination of stereo imagery. In the positioning by stereo imagery, a condition regarding the consistency of the left and right images can be defined. This corresponds to the certain value of the exposure time of the image sensor, and this depends on the target’s attitude angle. In this paper, we discuss target attitude estimation using this minimum exposure time at which the integrity measure converges. A physical model was derived under general conditions of target position and experimental configuration. Target attitudes were estimated within an error range of 10 to 15 degrees in approximately 60 degrees range. On the other hand, there is an attitude estimation method based on the apparent size of the target. When using this method to estimate the attitude angle, errors are significantly large for specular and diffuse mixed targets like the PV. The method proposed in this paper is a robust attitude estimation method for the photovoltaic device in OWPT.

Funder

Tsurugi-Photonics Foundation

Economic Research Foundation

Mechanical Social Systems Foundation and Optoelectronics Industry and Technology Development Association

Publisher

MDPI AG

Subject

Radiology, Nuclear Medicine and imaging,Instrumentation,Atomic and Molecular Physics, and Optics

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3