Dynamic Polarization Patterning Technique for High-Quality Liquid Crystal Planar Optics

Author:

Qin Xinwei12,Zhao Keyang12,Zhang Xin-jun12,Zhou Xiaohong12,Huang Wenbin12ORCID,Chen Linsen12

Affiliation:

1. School of Optoelectronic Science and Engineering & Collaborative Innovation Center of Suzhou Nano Science and Technology, Soochow University, Suzhou 215006, China

2. Key Lab of Advanced Optical Manufacturing Technologies of Jiangsu Province & Key Lab of Modern Optical Technologies of Education Ministry of China, Soochow University, Suzhou 215006, China

Abstract

The Pancharatnam–Berry (PB)-phase liquid crystal (LC) planar optical elements, featuring large apertures and a light weight, are emerging as the new generation optics. The primary method for fabricating large-aperture LC planar optical elements is through photo-alignment, utilizing polarization laser direct writing. However, conventional polarization direct writing suffers from an inertia-induced stopping step during splicing, leading to suboptimal optical effects. Here, we propose a novel highly efficient method for arbitrary polarization patterning, significantly reducing interface splicing errors in these optical elements. (We call it dynamic polarization patterning technology). This process involves simultaneous mobile splicing and real-time generation of different polarization patterns for exposure, eliminating the inertia-related splicing interruption. As a demonstration, we fabricated a lens with an aperture of approximately 1 cm within 30 min at 633 nm. Furthermore, we developed a 100% fill-factor lens array (3 × 3) with an element lens diameter of approximately 7 mm within 1.5 h at 532 nm. Their focal lengths were uniformly set at 30 cm, demonstrating superior convergence capabilities within their designated working wavelengths, alongside commendable performance in converging light across various other wavelengths. Our measurements confirmed the good focusing performance of these samples. The convergence spot size of the lens deviated by approximately 40% from the theoretical diffraction limit, whereas the lens array exhibited a deviation of around 30%. The dynamic polarization direct writing during uniform platform movement reduced splicing errors to a mere 100–200 nm. The enhancement in imaging quality can be primarily attributed to the innovative use of mobile polarization splicing exposure technology, coupled with the inherent self-smoothing properties of LC molecules. This synergy significantly mitigates the impact of seam diffraction interference.

Funder

National Key Research and Development Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3