Autothermal Siberian Pine Nutshell Pyrolysis Maintained by Exothermic Reactions

Author:

Astafev Alexander,Shanenkov IvanORCID,Ibraeva Kanipa,Tabakaev Roman,Preis SergeiORCID

Abstract

The global energy industry works towards an increased use of carbon-neutral biomass. Nutshell represents a regional bio-waste, i.e., a bio-energy resource. Pyrolysis is a common method for processing biomass into valuable energy products. The heat demand, however, limits pyrolysis applications. Yet, such demand may be addressed via exothermic pyrolysis reactions under selected operation conditions. Making the pyrolysis of Siberian pine nutshell autothermic comprised the objective of the study. The study involved analytical methods together with a pyrolysis experiment. The analytical methods included a thermogravimetric analysis combined with differential scanning calorimetry and an integrated gas analyzer. Thermophysical characterization was executed using a thermal diffusivity analyzer with the laser flash method. At 650 °C, pyrolytic heat was released in the amount of 1224.6 kJ/kg, exceeding the heat demand of 1179.5 kJ/kg. Pyrolysis at a lower temperature of 550 °C remained endothermic, although the combusted gas product provided 847.7 kJ/kg of heat, which, together with exothermic release, covered the required heat demand for the pyrolysis process.

Funder

Russian Foundation for Basic Research

Russian Science Foundation

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous),Building and Construction

Reference53 articles.

1. Strategies to achieve a carbon neutral society: a review

2. Achieving Paris Agreement temperature goals requires carbon neutrality by middle century with far-reaching transitions in the whole society

3. Carbon tax and energy innovation at crossroads of carbon neutrality: Designing a sustainable decarbonization policy

4. Paris Agreement, Paris https://unfccc.int/process-and-meetings/the-paris-agreement/the-paris-agreement

5. Framework for Attaining Carbon Neutrality in the United Nations Economic Commission for Europe (ECE) Region by 2050 Note by the Task Force on Carbon Neutrality http://www.unece.org/energy/pathwaystose.html

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3