Avellanin A Has an Antiproliferative Effect on TP-Induced RWPE-1 Cells via the PI3K-Akt Signalling Pathway

Author:

Xu Chang1,Cao Guangping12,Zhang Hong1,Bai Meng12,Yi Xiangxi12,Qu Xinjian12

Affiliation:

1. Faculty of Pharmacy/Institute of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China

2. Guangxi Key Laboratory of Marine Drugs, Guangxi University of Chinese Medicine, Nanning 530200, China

Abstract

Cyclic pentapeptide compounds have garnered much attention as a drug discovery resource. This study focused on the characterization and anti-benign prostatic hyperplasia (BPH) properties of avellanin A from Aspergillus fumigatus fungus in marine sediment samples collected in the Beibu Gulf of Guangxi Province in China. The antiproliferative effect and molecular mechanism of avellanin A were explored in testosterone propionate (TP)-induced RWPE-1 cells. The transcriptome results showed that avellanin A significantly blocked the ECM–receptor interaction and suppressed the downstream PI3K-Akt signalling pathway. Molecular docking revealed that avellanin A has a good affinity for the cathepsin L protein, which is involved in the terminal degradation of extracellular matrix components. Subsequently, qRT-PCR analysis revealed that the expression of the genes COL1A1, COL1A2, COL5A2, COL6A3, MMP2, MMP9, ITGA2, and ITGB3 was significantly downregulated after avellanin A intervention. The Western blot results also confirmed that it not only reduced ITGB3 and FAK/p-FAK protein expression but also inhibited PI3K/p-PI3K and Akt/p-Akt protein expression in the PI3K-Akt signalling pathway. Furthermore, avellanin A downregulated Cyclin D1 protein expression and upregulated Bax, p21WAF1/Cip1, and p53 proapoptotic protein expression in TP-induced RWPE-1 cells, leading to cell cycle arrest and inhibition of cell proliferation. The results of this study support the use of avellanin A as a potential new drug for the treatment of BPH.

Funder

Development Program of High-level Talent Team under the Qihuang Project of Guangxi University of Chinese Medicine

Natural Science Foundation of Guangxi

Guangxi University of Chinese Medicine-Guipai Xinglin Top Talent Funding Project

Research Launching Fund Project from Guangxi University of Chinese Medicine Introduced Doctoral

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3