Methanolic Extract and Brominated Compound from the Brazilian Marine Sponge Aplysina fulva Are Neuroprotective and Modulate Inflammatory Profile of Microglia

Author:

Nunes Catarina de Jesus1,Santos Cinthia Cristina1,Soares Erica Novaes1,Lima Irlã Santos1,Alves Uesley Vieira2,Lanna Emílio3,Batista Ronan2ORCID,do Nascimento Ravena Pereira1ORCID,Costa Silvia Lima14ORCID

Affiliation:

1. Laboratory of Neurochemistry and Cell Biology (LabNq), Department of Biochemistry and Biophysics, Institute of Science and Health, Federal University of Bahia, Salvador 40231-300, Bahia, Brazil

2. Laboratory of Research in Bioactive Substances (LAPESBI), Department of Organic Chemistry, Institute of Chemistry, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil

3. Biology Institute, Federal University of Bahia, Salvador 40170-115, Bahia, Brazil

4. National Institute of Translational Neuroscience, Rio de Janeiro 21941-902, Rio de Janeiro, Brazil

Abstract

Neurodegenerative diseases involve neuroinflammation and a loss of neurons, leading to disability and death. Hence, the research into new therapies has been focused on the modulation of the inflammatory response mainly by microglia/macrophages. The extracts and metabolites of marine sponges have been presented as anti-inflammatory. This study evaluated the toxicity of an extract and purified compound from the Brazilian marine sponge Aplysina fulva as well as its neuroprotection against inflammatory damage associated with the modulation of microglia response. PC12 neuronal cells and neonatal rat microglia were treated with the methanolic extract of A. fulva (AF-MeOH, 0.1–200 μg/mL) or with its purified dimethyl ketal of 3,5-dibromoverongiaquinol (AF-H1, 0.1–100 μM). Cytotoxicity was determined by MTT tetrazolium, Trypan blue, and propidium iodide; microglia were also treated with the conditioned medium (CM) from PC12 cells in different conditions. The microglia phenotype was determined by the expression of Iba-1 and CD68. AF-MeOH and AF-H1 were not toxic to PC12 or the microglia. Inflammatory damage with Escherichia coli lipopolysaccharide (LPS, 5 μg/mL) was not observed in the PC12 cells treated with AF-MeOH (1–10 μg/mL) or AF-H1 (1–10 μM). Microglia subjected to the CM from PC12 cells treated with LPS and AF-MeOH or AF-H1 showed the control phenotype-like (multipolar, low-CD68), highlighting the anti-neuroinflammatory and neuroprotective effect of components of this marine sponge.

Funder

Coordination of Personnel Improvement of Higher Level

National Council for Scientific and Technological Development

National Institute for Translational Neuroscience Brazil

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3