Nonstationary Extreme Value Analysis of Nearshore Sea-State Parameters under the Effects of Climate Change: Application to the Greek Coastal Zone and Port Structures

Author:

Galiatsatou PanagiotaORCID,Makris ChristosORCID,Krestenitis YannisORCID,Prinos PanagiotisORCID

Abstract

In the present work, a methodological framework, based on nonstationary extreme value analysis of nearshore sea-state parameters, is proposed for the identification of climate change impacts on coastal zone and port defense structures. The applications refer to the estimation of coastal hazards on characteristic Mediterranean microtidal littoral zones and the calculation of failure probabilities of typical rubble mound breakwaters in Greek ports. The proposed methodology hinges on the extraction of extreme wave characteristics and sea levels due to storm events affecting the coast, a nonstationary extreme value analysis of sea-state parameters and coastal responses using moving time windows, a fitting of parametric trends to nonstationary parameter estimates of the extreme value models, and an assessment of nonstationary failure probabilities on engineered port protection. The analysis includes estimation of extreme total water level (TWL) on several Greek coasts to approximate the projected coastal flooding hazard under climate change conditions in the 21st century. The TWL calculation considers the wave characteristics, sea level height due to storm surges, mean sea level (MSL) rise, and astronomical tidal ranges of the study areas. Moreover, the failure probabilities of a typical coastal defense structure are assessed for several failure mechanisms, considering variations in MSL, extreme wave climates, and storm surges in the vicinity of ports, within the framework of reliability analysis based on the nonstationary generalized extreme value (GEV) distribution. The methodology supports the investigation of future safety levels and possible periods of increased vulnerability of the studied structure to different ultimate limit states under extreme marine weather conditions associated with climate change, aiming at the development of appropriate upgrading solutions. The analysis suggests that the assumption of stationarity might underestimate the total failure probability of coastal structures under future extreme marine conditions.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Reference90 articles.

1. Climate Change 2007: The Scientific Basis, Contribution of Working Group I to the Fourth Assessment Report of IPCC,2007

2. Managing the Risks of Extreme Events and Disasters to Advance Climate change Adaptation,2012

3. Climate Change 2013: The Physical Science Basis, Contribution of Working Group I to the Fifth Assessment Report of IPCC,2014

4. Coastal sea level trends in Southern Europe

5. 21st century climate change scenario for the Mediterranean using a coupled atmosphere–ocean regional climate model

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3