Optimization of the Equivalent Source Configuration for the Equivalent Source Method

Author:

Zhang LanyueORCID,Wang JiaORCID,Yang Desen,Hu BoORCID,Wu DiORCID

Abstract

The equivalent source method is widely applied to study structural acoustic radiation in an underwater environment. However, there is still uncertainty in arranging the equivalent source, and the current mainstream configuration method needs a large number of equivalent sources, limiting its practical applicability. In this paper, an equivalent source configuration method that is simple, effective, and easy to implement, and which based on a tradeoff between the ill condition of the transfer matrix and the adequacy of the simulated structure’s radiated sound field, is proposed. The optimization method can derive the appropriate positions and quantity of monopole equivalent sources simultaneously. The method does not yield an optimal solution in a strict mathematical sense but provides satisfactory results compared with those obtained by uniformly distributed equivalent sources. Numerical simulation results showed that the optimization method derives accurate sound field calculation results with a relatively small number of equivalent sources, significantly reducing the number of subsequent calculations needed. Finally, the experiments conducted with a cylindrical shell structure verified the validity and practicality of the proposed method.

Publisher

MDPI AG

Subject

Ocean Engineering,Water Science and Technology,Civil and Structural Engineering

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Research on the Equivalent Method of Complex Structures Based on a Few Simple Sources in Typical Shallow Sea Waveguide;2023 IEEE 11th International Conference on Computer Science and Network Technology (ICCSNT);2023-10-21

2. Application of equivalent source intensity density interpolation in near-field acoustic holography;Measurement Science and Technology;2023-07-27

3. Acoustic Source Characterization of Marine Propulsors;Journal of Marine Science and Engineering;2022-09-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3