Author:
Jing Qianfeng,Wang Haichao,Hu Bin,Liu Xiuwen,Yin Yong
Abstract
A complete virtual test environment is a powerful tool for Autonomous Surface Vessels (ASVs) research, and the simulation of ship motion and shipborne sensors is one of the prerequisites for constructing such an environment. This paper proposed a universal simulation framework of shipborne inertial sensors. A ship motion model considering environmental disturbances is proposed to simulate the six-degrees-of-freedom motion of ships. The discrete form of the inertial sensor stochastic error model is derived. The inertial measurement data are simulated by adding artificial errors to a simulated motion status. In addition, the ship motion simulation, inertial measurement simulation, and environment simulation nodes are implemented based on the computational graph architecture of the Robot Operating System (ROS). The benefit from the versatility of the ROS messages, the format of simulated inertial measurement is exactly the same as that of real sensors, which provides a research basis for the fusion perception algorithm based on visual–inertial and laser–inertial sensors in the research field of ASVs.
Funder
Intelligent Ship Testing and Verification
Subject
Ocean Engineering,Water Science and Technology,Civil and Structural Engineering
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献