p-Moment Mittag–Leffler Stability of Riemann–Liouville Fractional Differential Equations with Random Impulses

Author:

Agarwal Ravi,Hristova SnezhanaORCID,O’Regan Donal,Kopanov Peter

Abstract

Fractional differential equations with impulses arise in modeling real world phenomena where the state changes instantaneously at some moments. Often, these instantaneous changes occur at random moments. In this situation the theory of Differential equations has to be combined with Probability theory to set up the problem correctly and to study the properties of the solutions. We study the case when the time between two consecutive moments of impulses is exponentially distributed. In connection with the application of the Riemann–Liouville fractional derivative in the equation, we define in an appropriate way both the initial condition and the impulsive conditions. We consider the case when the lower limit of the Riemann–Liouville fractional derivative is fixed at the initial time. We define the so called p-moment Mittag–Leffler stability in time of the model. In the case of integer order derivative the introduced type of stability reduces to the p–moment exponential stability. Sufficient conditions for p–moment Mittag–Leffler stability in time are obtained. The argument is based on Lyapunov functions with the help of the defined fractional Dini derivative. The main contributions of the suggested model is connected with the implementation of impulses occurring at random times and the application of the Riemann–Liouville fractional derivative of order between 0 and 1. For this model the p-moment Mittag–Leffler stability in time of the model is defined and studied by Lyapunov functions once one defines in an appropriate way their Dini fractional derivative.

Publisher

MDPI AG

Subject

General Mathematics,Engineering (miscellaneous),Computer Science (miscellaneous)

Reference31 articles.

1. Existence results for differential equations with fractional order and impulses;Agarwal;Mem. Differ. Equ. Math. Phys.,2008

2. On the global existence of solutions to a class of fractional differential equations;Baleanu;Comput. Math. Appl.,2010

3. Variational Lyapunov method for fractional differential equations;Devi;Comput. Math. Appl.,2012

4. On the concept and existence of solution for impulsive fractional differential equations

5. Qualitative Investigations and Approximate Methods for Impulsive Differential Equations;Hristova,2009

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3