Independent Dual-Channel Approach to Mesoscopic Graphene Transistors

Author:

Sánchez Fernando,Sánchez Vicenta,Wang ChuminORCID

Abstract

Graphene field-effect transistors (GFETs) exhibit unique switch and sensing features. In this article, GFETs are investigated within the tight-binding formalism, including quantum capacitance correction, where the graphene ribbons with reconstructed armchair edges are mapped into a set of independent dual channels through a unitary transformation. A new transfer matrix method is further developed to analyze the electron transport in each dual channel under a back gate voltage, while the electronic density of states of graphene ribbons with transversal dislocations are calculated using the retarded Green’s function and a novel real-space renormalization method. The Landauer electrical conductance obtained from these transfer matrices was confirmed by the Kubo–Greenwood formula, and the numerical results for the limiting cases were verified on the basis of analytical results. Finally, the size- and gate-voltage-dependent source-drain currents in GFETs are calculated, whose results are compared with the experimental data.

Funder

National Autonomous University of Mexico

Publisher

MDPI AG

Subject

General Materials Science,General Chemical Engineering

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3