Author:
Qi Yanling,Li Yuanyuan,Wang Wei
Abstract
Investigation of Cu(II) and Se(IV) electrochemical reduction processes in solutions with poly(ethylene glycol) (PEG) provides important theoretical guidance for the preparation of Cu-Se alloy films with stronger thermoelectric properties. The results reveal that PEG adsorbing on the electrode surface does not affect the electrochemical reduction mechanism of Cu(II), Se(IV), and Cu(II)-Se(IV), but inhibits the electrochemical reduction rates. The surface morphology and composition change with a negative shift in the deposition potentials. The Cu-Se alloy film, which was prepared at 0.04 V, was α-Cu2Se as-deposited and P-type thermoelectric material after annealing. The highest thermoelectric properties were as follows: Seebeck coefficient (α) was +106 μV·K−1 and 1.89 times of Cu-Se alloy film electrodeposited in Cu(II)-Se(IV) binary solution without PEG; resistivity (ρ) was 2.12 × 10−3 Ω·cm, and the calculated power factor (PF) was 5.3 μW·cm−1K−2 and 4.07 times that without PEG.
Subject
General Materials Science,General Chemical Engineering
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献