Testing the Physical and Mechanical Properties of Polyacrylonitrile Nanofibers Reinforced with Succinite and Silicon Dioxide Nanoparticles

Author:

Lasenko IngaORCID,Grauda Dace,Butkauskas Dalius,Sanchaniya Jaymin VrajlalORCID,Viluma-Gudmona Arta,Lusis VitalijsORCID

Abstract

In this research, we focused on testing the physical and mechanical properties of the developed polyacrylonitrile (PAN) composite nanofibers with succinite (Baltic amber) and SiO2 particles using standard methods of nanofiber testing (physical and mechanical properties). Polyacrylonitrile composite nanofibers (based on the electrospinning method) were coated on an aluminum substrate for structural investigation. SEM was used to determine the average fiber diameter and standard deviation. The mechanical properties of the fibers were determined using a universal testing machine (NANO, MTS). We observed that constant or decreased levels of crystallinity in the ultrafine composite nanofibers led to the preservation of high levels of strain at failure and that the strength of nanofibers increased substantially as their diameter reduced. Improvements in PAN composite nanofibers with succinite and SiO2 nanopowder are feasible with continuous decreases in diameter. The drastically decreased strain at failure demonstrated a substantial reduction in viscosity (toughness) of the annealed nanofibers. Large stresses at failure in the as-spun nanofibers were a result of their low crystallinity. As a result, decreasing the diameter of PAN nanofibers from approximately 2 micrometers to 139 nanometers (the smallest nanofiber tested) resulted in instantaneous increases in the elastic modulus from 1 to 26 GPa, true strength from 100 to 1750 MPa, and toughness from 20 to 604 MPa.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3