Cloud Overlap Features from Multi-Year Cloud Radar Observations at the SACOL Site and Comparison with Satellites

Author:

Yang Xuan12ORCID,Li Qinghao1,Ge Jinming1,Wang Bo1,Peng Nan1,Su Jing1,Zhang Chi1,Du Jiajing1

Affiliation:

1. Key Laboratory for Semi-Arid Climate Change of the Ministry of Education and College of Atmospheric Sciences, Lanzhou University, Lanzhou 730000, China

2. Henan Key Laboratory of Agrometeorological Support and Applied Technique, CMA, Zhengzhou 450000, China

Abstract

Cloud overlap, referring to distinct cloud layers occurring over the same location, is essential for accurately calculating the atmospheric radiation transfer in numerical models, which, in turn, enhances our ability to predict future climate change. In this study, we analyze multi-year cloud overlap properties observed from the Ka-band Zenith Radar (KAZR) at the Semi-Arid Climate and Environment Observatory of Lanzhou University’s (SACOL) site. We conduct a series of statistical analyses and determine the suitable temporal-spatial resolution of 1 h with a 360 m scale for data analysis. Our findings show that the cloud overlap parameter and total cloud fraction are maximized during winter-spring and minimized in summer-autumn, and the extreme value of decorrelation length usually lags one or two seasons. Additionally, we find the cloud overlap assumption has distinct effects on the cloud fraction bias for different cloud types. The random overlap leads to the minimum bias of the cloud fraction for Low-Middle-High (LMH), Low-Middle (LM), and Middle-High (MH) clouds, while the maximum overlap is for Low (L), Middle (M), and High (H) clouds. We also incorporate observations from satellite-based active sensors, including CloudSat, Cloud-Aerosol Lidar, and Infrared Pathfinder Satellite Observations (CALIPSO), to refine our study area and specific cases by considering the total cloud fraction and sample size from different datasets. Our analysis reveals that the representativeness of random overlap strengthens and then weakens with increasing layer separations. The decorrelation length varies with the KAZR, CloudSat-CALIPSO, CloudSat, and CALIPSO datasets, measuring 1.43 km, 2.18 km, 2.58 km, and 1.11 km, respectively. For H, MH, and LMH clouds, the average cloud overlap parameter from CloudSat-CALIPSO aligns closely with KAZR. For L, M, and LM clouds, when the level separation of cloud layer pairs are less than 1 km, the representative assumption obtained from different datasets are maximum overlap.

Funder

National Science Foundation of China

Science and Technology Project of Gansu Province

Fundamental Research Funds for the Central Universities

Publisher

MDPI AG

Reference40 articles.

1. Comparison of marine stratocumulus cloud top heights in the southeastern Pacific retrieved from satellites with coincident ship-based observations;Garay;J. Geophys. Res. Atmos.,2008

2. Diurnal variations of global clouds observed from the CATS spaceborne lidar and their links to large-scale meteorological factors;Ge;Clim. Dyn.,2021

3. Yang, X., Ge, J., Hu, X., Wang, M., and Han, Z. (2021). Cloud-Top Height Comparison from Multi-Satellite Sensors and Ground-Based Cloud Radar over SACOL Site. Remote Sens., 13.

4. Masson-Delmotte, V., Zhai, P., Pirani, A., Connors, S.L., Péan, C., Berger, S., Caud, N., Chen, Y., Goldfarb, L., and Gomis, M.I. (2021). Climate Change 2021: The Physical Science Basis. Contribution of Working Group I to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change, Cambridge University Press.

5. Atmospheric Instability Dominates the Long-Term Variation of Cloud Vertical Overlap Over the Southern Great Plains Site;Li;J. Geophys. Res. Atmos.,2019

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3