Affiliation:
1. Key Laboratory of Target Cognition and Application Technology, Aerospace Information Research Institute, CAS, Beijing 100094, China
2. Key Laboratory of Network Information System Technology, Aerospace Information Research Institute, CAS, Beijing 100190, China
Abstract
Height estimation has long been a pivotal topic within measurement and remote sensing disciplines, with monocular height estimation offering wide-ranging data sources and convenient deployment. This paper addresses the existing challenges in monocular height estimation methods, namely the difficulty in simultaneously achieving high-quality instance-level height and edge reconstruction, along with high computational complexity. This paper presents a comprehensive solution for monocular height estimation in remote sensing, termed HeightFormer, combining multilevel interactions and image-adaptive classification–regression. It features the Multilevel Interaction Backbone (MIB) and Image-adaptive Classification–regression Height Generator (ICG). MIB supplements the fixed sample grid in the CNN of the conventional backbone network with tokens of different interaction ranges. It is complemented by a pixel-, patch-, and feature map-level hierarchical interaction mechanism, designed to relay spatial geometry information across different scales and introducing a global receptive field to enhance the quality of instance-level height estimation. The ICG dynamically generates height partition for each image and reframes the traditional regression task, using a refinement from coarse to fine classification–regression that significantly mitigates the innate ill-posedness issue and drastically improves edge sharpness. Finally, the study conducts experimental validations on the Vaihingen and Potsdam datasets, with results demonstrating that our proposed method surpasses existing techniques.
Funder
Key Laboratory fund of Chinese Academy of Sciences
the Key Laboratory fund of Chinese Academy of Sciences
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献