Characterization of Intrinsic Radiation Sensitivity in a Diverse Panel of Normal, Cancerous and CRISPR-Modified Cell Lines

Author:

Liberal Francisco D. C. Guerra1ORCID,McMahon Stephen J.1ORCID

Affiliation:

1. The Patrick G Johnston Centre for Cancer Research, Queen’s University Belfast, Belfast BT7 1NN, UK

Abstract

Intrinsic radiosensitivity is a major determinant of radiation response. Despite the extensive amount of radiobiological data available, variability among different studies makes it very difficult to produce high-quality radiosensitivity biomarkers or predictive models. Here, we characterize a panel of 27 human cell lines, including those derived from lung cancer, prostate cancer, and normal tissues. In addition, we used CRISPR-Cas9 to generate a panel of lines with known DNA repair defects. These cells were characterised by measuring a range of biological features, including the induction and repair of DNA double-strand breaks (DSBs), cell cycle distribution, ploidy, and clonogenic survival following X-ray irradiation. These results offer a robust dataset without inter-experimental variabilities for model development. In addition, we used these results to explore correlations between potential determinants of radiosensitivity. There was a wide variation in the intrinsic radiosensitivity of cell lines, with cell line Mean Inactivation Doses (MID) ranging from 1.3 to 3.4 Gy for cell lines, and as low as 0.65 Gy in Lig4−/− cells. Similar substantial variability was seen in the other parameters, including baseline DNA damage, plating efficiency, and ploidy. In the CRISPR-modified cell lines, residual DSBs were good predictors of cell survival (R2 = 0.78, p = 0.009), as were induced levels of DSBs (R2 = 0.61, p = 0.01). However, amongst the normal and cancerous cells, none of the measured parameters correlated strongly with MID (R2 < 0.45), and the only metrics with statistically significant associations are plating efficiency (R2 = 0.31, p = 0.01) and percentage of cell in S phase (R2 = 0.37, p = 0.005). While these data provide a valuable dataset for the modelling of radiobiological responses, the differences in the predictive power of residual DSBs between CRISPR-modified and other subgroups suggest that genetic alterations in other pathways, such as proliferation and metabolism, may have a greater impact on cellular radiation response. These pathways are often neglected in response modelling and should be considered in the future.

Funder

UKRI Future Leaders Fellowship

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3