I329L: A Dual Action Viral Antagonist of TLR Activation Encoded by the African Swine Fever Virus (ASFV)

Author:

Correia Sílvia123,Moura Pedro Luís1,Ventura Sónia1,Leitão Alexandre23,Parkhouse Robert Michael Evans1

Affiliation:

1. Instituto Gulbenkian de Ciência, 2780-156 Oeiras, Portugal

2. CIISA—Centro de Investigação Interdisciplinar em Sanidade Animal, Faculdade de Medicina Veterinária, Universidade de Lisboa, 1300-477 Lisbon, Portugal

3. Laboratório Associado para Ciência Animal e Veterinária (AL4AnimalS), 1300-477 Lisbon, Portugal

Abstract

The African Swine Fever Virus (ASFV) is an economically important, large DNA virus which causes a highly contagious and frequently fatal disease in domestic pigs. Due to the acute nature of the infection and the complexity of the protective porcine anti-ASFV response, there is no accepted vaccine in use. As resistance to ASFV is known to correlate with a robust IFN response, the virus is predicted to have evolved strategies to inhibit innate immunity by modulating the IFN response. The deletion of virus host evasion gene(s) inhibiting IFN is a logical solution to develop an attenuated virus vaccine. One such candidate, the ASFV ORF I329L gene, is highly conserved in pathogenic and non-pathogenic virus isolates and in this study we confirm and extend the conclusion that it has evolved for the inhibition of innate immunity initiated through Toll-like receptors (TLRs). Specifically, the ASFV I329L extracellular (ECD) and intracellular (ICD) domains inhibit TLR signalling by two entirely different mechanisms. Bioinformatics modelling suggests that the ECD inhibits several TLR signalling pathways through a short sequence homologous to the conserved TLR dimerization domain, here termed the putative dimerization domain (PDD). Remarkably, both full length and PDD constructs of I329L were demonstrated to inhibit activation, not only of TLR3, but also TLR4, TLR5, TLR8 and TLR9. Additionally, the demonstration of a weak association of I329L with TLR3 is consistent with the formation of a non-signalling I329L-TLR3 heterodimer, perhaps mediated through the PDD of I329L. Finally, the ICD associates with TRIF, thereby impacting on both TLR3 and TLR4 signalling. Thus, I329L offers potential as a general inhibitor of TLR responses and is a rational candidate for construction and testing of an I329L deletion mutant vaccine.

Funder

Fundação para a Ciência e a Tecnologia

European Union׳s Seventh Framework Programme

AL4AnimalS

Publisher

MDPI AG

Subject

Virology,Infectious Diseases

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3