Modelling Inductive Sensors for Arc Fault Detection in Aviation

Author:

Barroso-de-María Gabriel1ORCID,Robles Guillermo2ORCID,Martínez-Tarifa Juan Manuel2ORCID,Cuadrado Alexander3ORCID

Affiliation:

1. Airbus Defence and Space, 28906 Getafe, Spain

2. Department of Electrical Engineering, University Carlos III of Madrid, 28911 Leganes, Spain

3. Escuela de Ciencias Experimentales y Tecnología, University Rey Juan Carlos, 28008 Madrid, Spain

Abstract

Modern aircraft are being equipped with high-voltage and direct current (HVDC) architectures to address the increase in electrical power. Unfortunately, the rise of voltage in low pressure environments brings about a problem with unexpected ionisation phenomena such as arcing. Series arcs in HVDC cannot be detected with conventional means, and finding methods to avoid the potentially catastrophic hazards of these events becomes critical to assure further development of more electric and all electric aviation. Inductive sensors are one of the most promising detectors in terms of sensitivity, cost, weight and adaptability to the circuit wiring in aircraft electric systems. In particular, the solutions based on the detection of the high-frequency (HF) pulses created by the arc have been found to be good candidates in practical applications. This paper proposes a method for designing series arc fault inductive sensors able to capture the aforementioned HF pulses. The methodology relies on modelling the parameters of the sensor based on the physics that intervenes in the HF pulses interaction with the sensor itself. To this end, a comparative analysis with different topologies is carried out. For every approach, the key parameters influencing the HF pulses detection are studied theoretically, modelled with a finite elements method and tested in the laboratory in terms of frequency response. The final validation tests were conducted using the prototypes in real cases of detection of DC series arcs.

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3