Hydrogeochemistry and Isotope Hydrology of Surface Water and Groundwater in the Mountain Watersheds of Daqing River, North China

Author:

Zhao Yuhan,Yang Hui,Cao Jiansheng

Abstract

Surface water and groundwater interaction variations in time and space are crucial for effective water management, especially in low-precipitation regions. To comprehensively determine the hydrochemical characteristics and interaction processes of surface water and groundwater and to investigate the decreasing causes of water resources in semi-arid mountainous watersheds under changing environments, intensive field surveys were conducted in the Daqing River watershed, a tributary of the Haihe River basin in northern China, during two different times of the year: after the rainy season (September 2018) and before the rainy season (July 2019). Sixty surface water and groundwater samples were collected along the mountainous watershed. Using a combination method of hydrogen and oxygen stable isotope tracing and hydrochemical analysis, the hydrogen and oxygen isotopes and hydrochemical characteristics of surface water and groundwater in the mountainous watershed of the Daqing River were analyzed. Furthermore, the effect of elevation (altitude) on isotopes was discussed, and the correlation between hydrogen and oxygen isotope composition and hydrochemical characteristics was obtained. The results were processed using endmember mixing analysis to determine the amount of contribution of the surface water and groundwater interaction processes. The results show that the hydrochemical characteristics are relatively stable in the mountainous watersheds of the Daqing River, and the surface water and groundwater are mainly of the HCO3-Ca type. The slope of the local meteoric water line is smaller than the slope of the global meteoric water line, and the δD and δ18O in surface water and groundwater show a good linear relationship both before and after the rainy season. There is a decreasing trend of the value of δ18O in surface water samples with decreasing altitude, but a decreasing trend of the value of δ18O in groundwater samples is not obvious. The evaporation intensity of surface water is stronger after the rainy season than before the rainy season, and the connection between the surface water and the groundwater is stronger before the rainy season. Influenced by topographic conditions and other factors, the exchange of surface water and groundwater is frequent, and there is a large difference in the exchange ratio before and after the rainy season. The exchange ratio can be more than 50% after the rainy season. Thus, the reasons for decreasing water resources in the mountains can be implied to be due to the increasing hydraulic gradient between the mountains and the piedmont plains, and the water resources are discharged more in the form of groundwater to the downstream. The conclusions help to enhance the understanding of the water cycle in the mountainous watershed and can provide some theoretical basis for the sustainable development and utilization of water resources in the Haihe River basin and the regional water ecology of the Xiong’an New Area.

Funder

Natural Science Foundation of Hebei Province

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3