Abstract
Conventional formulations of antiviral drug acyclovir have various limitations such as low bioavailability. The current study was aimed at developing polymeric matrices for the controlled delivery of acyclovir using sericin as polymer and acrylic acid (AA) as a monomer. The free radical polymerization technique was used for hydrogel formulation. Briefly, sericin was chemically cross-linked with acrylic acid. N′-N′-methylene bis-acrylamide (MBA) and ammonium persulfate (APS) were used as cross-linker and initiator, respectively. FTIR spectra showed that acyclovir was successfully loaded into sericin hydrogel. SEM micrographs revealed that the outer surface was solid-like and smooth. According to DSC thermograms, the developed polymeric network was thermally stable. Amorphous nature of acyclovir was observed in XRD. The pH of medium and reactants’ concentration affected swelling dynamics and acyclovir release pattern. In addition, drug release occurred through a diffusion-controlled process. Sericin hydrogel suspension was well tolerable up to 3800 mg/kg of rabbits’ body weight. Haematology and serum chemistry results were well within the range signifying normal liver and kidney functions. Similarly, histopathology slides of the rabbit’s vital organs were also in normal condition without causing any histopathological change. It was concluded from the findings that sericin-co-AA polymeric matrices are ideal for the pH-dependent delivery of acyclovir.
Subject
Drug Discovery,Pharmaceutical Science,Molecular Medicine
Cited by
47 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献