Green Tea Polyphenol (-)-Epicatechin Pretreatment Mitigates Hepatic Steatosis in an In Vitro MASLD Model

Author:

Hefer Marija1,Petrovic Ana1,Roguljic Lucija Kuna1ORCID,Kolaric Tea Omanovic2,Kizivat Tomislav3ORCID,Wu Catherine H.1,Tabll Ashraf A.1ORCID,Smolic Robert2,Vcev Aleksandar4ORCID,Smolic Martina1ORCID

Affiliation:

1. Department of Translational Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia

2. Department of Pharmacology and Biochemistry, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia

3. Department of Nuclear Medicine and Oncology, Faculty of Medicine Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia

4. Department of Integrative Medicine, Faculty of Dental Medicine and Health Osijek, J. J. Strossmayer University of Osijek, 31000 Osijek, Croatia

Abstract

Abstract: Metabolic dysfunction-associated steatotic liver disease (MASLD), previously known as non-alcoholic fatty liver disease (NAFLD), is becoming more prominent globally due to an increase in the prevalence of obesity, dyslipidemia, and type 2 diabetes. A great deal of studies have proposed potential treatments for MASLD, with few of them demonstrating promising results. The aim of this study was to investigate the potential effects of (-)-epicatechin (EPI) on the development of MASLD in an in vitro model using the HepG2 cell line by determining the metabolic viability of the cells and the levels of PPARα, PPARγ, and GSH. HepG2 cells were pretreated with 10, 30, 50, and 100 μM EPI for 4 h to assess the potential effects of EPI on lipid metabolism. A MASLD cell culture model was established using HepG2 hepatocytes which were exposed to 1.5 mM oleic acid (OA) for 24 h. Moreover, colorimetric MTS assay was used in order to determine the metabolic viability of the cells, PPARα and PPARγ protein levels were determined using enzyme-linked immunosorbent assay (ELISA), and lipid accumulation was visualized using the Oil Red O Staining method. Also, the levels of intracellular glutathione (GSH) were measured to determine the level of oxidative stress. EPI was shown to increase the metabolic viability of the cells treated with OA. The metabolic viability of HepG2 cells, after 24 h incubation with OA, was significantly decreased, with a metabolic viability of 71%, compared to the cells pretreated with EPI, where the metabolic viability was 74–86% with respect to the concentration of EPI used in the experiment. Furthermore, the levels of PPARα, PPARγ, and GSH exhibited a decrease in response to increasing EPI concentrations. Pretreatment with EPI has demonstrated a great effect on the levels of PPARα, PPARγ, and GSH in vitro. Therefore, considering that EPI mediates lipid metabolism in MASLD, it should be considered a promising hepatoprotective agent in future research.

Funder

Croatian Ministry of Science and Education

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3