Evaluation of Dimethyl Carbonate as Alternative Biofuel. Performance and Smoke Emissions of a Diesel Engine Fueled with Diesel/Dimethyl Carbonate/Straight Vegetable Oil Triple Blends

Author:

Aguado-Deblas LauraORCID,Hidalgo-Carrillo JesúsORCID,Bautista Felipa M.ORCID,Luna CarlosORCID,Calero Juan,Posadillo Alejandro,Romero Antonio A.ORCID,Luna Diego,Estévez Rafael

Abstract

Dimethyl carbonate (DMC) is an interesting blending component for diesel fuel (D) owing to the high oxygen content (53 wt.%) and the absence of C–C bonds in its structure. Moreover, DMC can be produced from CO2 and methanol, which provides a renewable way to reduce anthropogenic CO2. This research has been addressed to assess the use of DMC as a solvent of sunflower oil (SO) and castor oil (CO), with the purpose of obtaining biofuels that can replace fossil diesel as much as possible. The blending of DMC with straight vegetable oils (SVOs) reduces their high viscosity, allowing their usage as drop-in biofuels without chemical treatments. Based on viscosity requirements of European Standard EN 590, the optimal DMC/SVO double blends have been tested as direct biofuels by themselves or mixed with fossil diesel in D/DMC/SVO triple blends. Relevant physico-chemical properties of fuels have been analyzed. Engine parameters such as power output, brake-specific fuel consumption (BSFC) and soot emissions have been studied to determine the effect of new biofuels on efficiency of a diesel engine. An outstanding engine efficiency is shown by the studied D/DMC/SVO triple blends, either with SO or CO as an SVO. The low calorific value of DMC is the main reason for reduction in power and BSFC, as the amount of diesel in the triple blends is reduced. Experimental results demonstrate that the use of these biofuels allows the replacement of up to 40% of fossil diesel, without compromising the power and BSFC of the engine, and accomplishing optimal cold flow properties and a marked drop in exhaust emissions.

Publisher

MDPI AG

Subject

Management, Monitoring, Policy and Law,Renewable Energy, Sustainability and the Environment,Geography, Planning and Development

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3