Research on Morphological Indicator Extraction Method of Pinus massoniana Lamb. Based on 3D Reconstruction

Author:

Li Yurong1ORCID,Xia Haifei1,Liu Ying1,Ji Kaihao1,Huo Lintao1,Ni Chao1

Affiliation:

1. College of Mechanical and Electronic Engineering, Nanjing Forestry University, Nanjing 210037, China

Abstract

Pinus massoniana (Lamb.) is an important plantation species in southern China. Accurate measurement of P. massoniana seedling morphological indicators is crucial for accelerating seedling quality assessment. Machine vision, with its objectivity and stability, can replace human eyes in performing these measurements. In this paper, a measurement method for seedling morphological indicators based on Euclidean distance, Laplacian contraction, PointNet++, and 3D reconstruction is proposed. Firstly, multi-angle sequence images of 30 one-year-old P. massoniana seedlings were collected, distorted, and corrected to generate a sparse point cloud through the Structure-from-Motion (SFM) and dense point cloud through the Patch-Based Multiple View Stereo (PMVS). Secondly, a Dense Weighted Semantic Segmentation Model based on PointNet++ was designed, achieving effective segmentation of the P. massoniana seedling point clouds. Finally, a multi-iteration plane method based on Laplacian contraction was proposed. The new skeleton points were refined by minimizing the Euclidean distance, iteratively generating the optimal morphological skeleton, thus facilitating the extraction of morphological indicators. The experimental results demonstrated a good correlation between the machine vision-extracted morphological indicators (including plant height, ground diameter, and height-to-diameter ratio) and manually measured data. The improved PointNet++ model achieved an accuracy of 0.9448 on the training set. The accuracy and Mean Intersection over Union (MIoU) of the test set reached 0.9430 and 0.7872, respectively. These findings can provide reliable technical references for the accurate assessment of P. massoniana seedling quality and the promotion of digital forestry construction.

Funder

National Natural Science Foundation of China

2019 Jiangsu Province Key Research and Development Plan by the Jiangsu Province Science and Technology

Publisher

MDPI AG

Subject

Forestry

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3