Robotic Knee Prosthesis with Cycloidal Gear and Four-Bar Mechanism Optimized Using Particle Swarm Algorithm

Author:

Al Kouzbary Mouaz,Al Kouzbary Hamza,Liu JingjingORCID,Khamis Taha,Al-Hashimi ZainaORCID,Shasmin Hanie Nadia,Arifin Nooranida,Abu Osman Noor AzuanORCID

Abstract

A powered transfemoral prosthesis is needed as people with transfemoral amputation show 60 percent extra metabolic cost when compared to people with no amputation. Recently, as illustrated in the literature, the most high-torque robotic knee prosthesis utilize harmonic reducers. Despite the advantage of high reduction ratio and efficiency, the harmonic drive cannot be back-driven. Therefore, the harmonic drive is not an optimal solution for prosthetic systems with direct and indirect contact with the environment. In this paper, we outline an initial design of robotic knee prosthesis. The proposed robotic knee prosthesis consists of BLDC motor, cycloidal gear with reduction ratio 13:1, four-bar mechanism, and timing belt transmission with 4:1 reduction ratio. To optimize the torque transmission and range of motion (RoM), a multiobjective optimization problem must be undertaken. The end-effector motion depends on each bar length in the four-bar mechanism. The four-bar mechanism was optimized using particle swarm optimization (PSO). To complete the optimization, a set of 50 steps was collected using wearable sensors. Then, the data of sagittal plan were processed to identify the target profile for PSO. The prototype’s computer-aided manufacturing (CAM) was completed using a MarkTwo 3D printer with carbon fiber composite. The overall design can achieve a maximum torque of 84 N.m. However, the current design lacks the elastic component (no spring is added on the actuator output), which is necessary for a functional prosthesis; this limitation will be addressed in future study.

Funder

Ministry of Science, Technology and Innovation

Publisher

MDPI AG

Subject

Control and Optimization,Control and Systems Engineering

Reference88 articles.

1. Joint Structure and Function: A Comprehensive Analysis;Levangie,2011

2. Biomechanical Basis of Human Movement;Hamill,2006

3. Transfemoral Amputation: Prosthetic Management. Atlas of Amputations and Limb Deficiencies;Muller,2016

4. Induction versus permanent magnet motors

5. Permanent magnet excited brushed DC motors

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3