Addressing EMI and EMF Challenges in EV Wireless Charging with the Alternating Voltage Phase Coil

Author:

Shafiq Zeeshan1,Li Tong1,Xia Jinglin2,Li Siqi3,Yang Xi4,Zhao Yu4

Affiliation:

1. Department of Transportation Engineering, Kunming University of Science and Technology, Kunming 650500, China

2. Facility of Mechanical and Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China

3. Department of Electrical Engineering, Kunming University of Science and Technology, Kunming 650500, China

4. Yunnan Energy Research Institute Co., Ltd., Kunming 650500, China

Abstract

Wireless charging technologies are widely used in electric vehicles (EVs) due to their advantages of convenience and safety. Conventional wireless charging systems often use planar circular or square spiral windings, which tend to produce strong electric fields (E-fields), leading to electromagnetic interference (EMI) and potential health risks. These standard coil configurations, while efficient in energy transfer, often fail to address the critical balance between E-field emission reduction and power transfer effectiveness. This study presents an “Alternating Voltage Phase Coil” (AVPC), an innovative coil design that can address these limitations. The AVPC retains the standard dimensions of traditional square coils (400 mm in length and width, with a 2.5 mm wire diameter and 22 turns), but introduces a novel current flow pattern called Sequential Inversion Winding (SIW). This configuration of the winding significantly reduces E-field emissions by altering the sequence of current through its loops. Rigorous simulations and experimental evaluations have demonstrated the AVPC’s ability to lower E-field emissions by effectively up to 85% while maintaining charging power. Meeting stringent regulatory standards, this advancement in the proposed coil design method provides a way for WPT systems to meet stringent regulatory standards requirements while maintaining transmission capability.

Funder

National Natural Science Foundation of China

Yunnan Fundamental Research Project

Yunnan Province Major Science and Technology Project

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3