Adsorption Characteristics of Activated Carbon Fibers in Respirator Cartridges for Toluene

Author:

Balanay Jo Anne G.ORCID,Oh JonghwaORCID

Abstract

Respirator use has been shown to be associated with overall discomfort. Activated carbon fiber (ACF) has potential as an alternative adsorbent for developing thinner, lightweight, and efficient respirators due to its larger surface area, microporosity, and fabric form. The purpose of this pilot study was to determine the adsorption characteristics of commercially available ACF in respirator cartridges with varying ACF composition for toluene protection. Seven ACF types (one cloth, six felt) with varying properties were tested. Seven ACF cartridge configurations with varying ACF composition were challenged with five toluene concentrations (20–500 ppm) at constant air temperature (23 °C), relative humidity (50%), and air flow (32 LPM). Breakthrough curves were obtained using photoionization detectors. Breakthrough times (10%, 50%, and 5 ppm) and adsorption capacities were compared among ACF cartridge configurations to determine their suitable application in respiratory protection. Results showed that ACF cartridges containing the densest ACF felt types had the longest average breakthrough times (e.g., ~250–270 min to reach 5 ppm breakthrough time) and those containing ACF felt types with the highest specific surface areas had the highest average adsorption capacity (~450–470 mg/g). The ACF cartridges demonstrated breakthrough times of <1 h for 500 ppm toluene and 8–16 h for 20 ppm toluene. The ACF cartridges are more reliable for use at low ambient toluene concentrations but still have potential for use at higher concentrations for short-term protection. ACF felt forms with appropriate properties (density of ~0.07 g/cm3; specific surface area of ~2000 m2/g) have shown promising potential for the development of lighter and thinner respirators for protection against toluene.

Funder

National Institute for Occupational Safety and Health

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3