Toxicity of a Binary Mixture of TiO2 and Imidacloprid Applied to Chlorella vulgaris

Author:

Adochite CristinaORCID,Andronic LuminitaORCID

Abstract

Nanoparticles have applications in various fields such as manufacturing and materials synthesis, the environment, electronics, energy harvesting, and medicine. Besides many applications of nanoparticles, further research is required for toxic environmental effect investigation. The toxic effect of titanium dioxide nanoparticles on the physiology of the green alga Chlorella vulgaris was studied with a widely used pesticide, imidacloprid (IMD). Chlorella vulgaris was exposed for 120 h in Bold’s basal medium to different toxic compounds, such as (i) a high concentration of TiO2 nanoparticles, 150–2000 mg/L, usually optimised in the photocatalytic degradation of wastewater, (ii) an extremely toxic pesticide for the aquatic environment, imidacloprid, in concentrations ranging from 5 to 40 mg/L, (iii) TiO2 nanoparticles combined with imidacloprid, usually used in a photocatalytic system. The results show that the TiO2 nanoparticles and IMD inhibited Chlorella vulgaris cell growth and decreased the biovolume by approximately 80% when 2 g/L TiO2 was used, meaning that the cells devised a mechanism to cope with a potentially stressful situation; 120 h of Chlorella vulgaris exposure to 40 mg/L of IMD resulted in a 16% decreased cell diameter and a 41% decrease in cell volume relative to the control sample, associated with the toxic effect of pesticides on the cells. Our study confirms the toxicity of nanoparticles through algal growth inhibition with an effective concentration (EC50) value measured after 72 h of 388.14 mg/L for TiO2 and 13 mg/L for IMD in a single-toxic system. The EC50 of TiO2 slowly decreased from 258.42 to 311.11 mg/L when IMD from 5 to 20 mg/L was added to the binary-toxic system. The concentration of TiO2 in the binary-toxic system did not change the EC50 for IMD, and its value was 0.019 g/L. The photodegradation process of imidacloprid (range of 5–40 mg/L) was also investigated in the algal medium incubated with 150–600 mg/L of titanium dioxide.

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

Cited by 11 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3