Abstract
The sustainable economy framework imposes the adoption of new ways for waste reuse and recycling. In this context, this paper proposes a new alternative to obtain glass fertilizers (agriglasses) by reusing two cheap and easily available wastes, wood ash and manganese rich sludge resulting from drinking water treatment processes for groundwater sources. Glasses were obtained using different amounts of wastes together with (NH4)2HPO4 and K2CO3 as raw materials. The P-K-Mn nutrient solubilization from the obtained glasses was investigated using a citric acid solution. The kinetics of the leaching process was studied after 1, 7, 14, 21 and 28 days, respectively. The intraparticle diffusion model was used to interpret kinetic data. Two distinct stages of the ion leaching process were recorded for all of the studied compositions: first through intraparticle diffusion (the rate-controlling stage) and second through diffusion through the particle–medium interface. The fertilization effect of the obtained agriglasses was studied on a barley crop. The specific plant growth parameters of germination percentage, average plant height, biomass and relative growth rate were determinate. The positive impact of the agriglasses upon the plants biomass and relative growth rate was highlighted. The effects of agriglasses can be tuned through glass compositions that affect the solubility of the nutrients.
Subject
Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献