Basin-Scale Pollution Loads Analyzed Based on Coupled Empirical Models and Numerical Models

Author:

Zhang Man,Chen Xiaolong,Yang Shuihua,Song Zhen,Wang Yonggui,Yu Qing

Abstract

Pollutant source apportionment is of great significance for water environmental protection. However, it is still challenging to accurately quantify pollutant loads at basin-scale. Refined analytical methods combined the pollution discharge coefficient method (PDCM), field observation, and numerical model (Soil & Water Assessment Tool, SWAT) to make quantitative source appointment in the Tuojiang River, a key tributary of the upper Yangtze River. The chemical oxygen demand (COD), total nitrogen (TN), total phosphorus (TP), and ammonia nitrogen (N-NH4+) were analyzed. Results showed that the urban sewage treatment plant point source has the largest contribution to COD, TN, and N-NH4+, while TP is mostly from the agricultural sources throughout the year. The total inflowing loads of pollution sources are significantly affected by rainfall. The overall pollution characteristics showed that pollutant loads present in different seasons are as follows: wet season > normal season > dry season. The month with the highest levels of pollutants is July in the wet season. Among the nine cities, the city that contributes the most COD, TN and N-NH4+, is Neijiang, accounting for about 25%, and the city that contributes the most TP is Deyang, accounting for 23%. Among the sub-basins, the Fuxi River subbasin and Qiuxihe River subbasin contribute the most pollutant loads. The technical framework adopted in this paper can be used to accurately identify the types, administrative regions and sub-basins of the main pollution sources in the watershed, which is conducive to management and governance of the environment.

Funder

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Health, Toxicology and Mutagenesis,Public Health, Environmental and Occupational Health

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3