Long-Term (1990–2013) Changes and Spatial Variations of Cropland Runoff across China

Author:

Zhang Yufu,Jiao Xinyi,Wei Yinghuai,Wu Hao,Pan Zheqi,Liu Mei,Yuan Julin,Ni Meng,Zhou Zhiming,Zeng Lingzao,Chen Dingjiang

Abstract

Quantitative information on regional cropland runoff is important for sustainable agricultural water quantity and quality management. This study combined the Soil Conservation Service Curve Number (SCS-CN) method and geostatistical approaches to quantify long-term (1990–2013) changes and regional spatial variations of cropland runoff in China. Estimated CN values from 17 cropland study sites across China showed reasonable agreement with default values from the National Engineering Handbook (R2 = 0.76, n = 17). Among four commonly used geostatistical interpolation methods, the inverse distance weighting (IDW) method achieved the highest accuracy (R2 = 0.67, n = 209) for prediction of cropland runoff. Using default CN values and the IDW method, estimated national annual cropland runoff volume and runoff depth in 1990–2013 were 253 ± 25 km3 yr−1 and 182 ± 15 mm yr−1, respectively. Estimated cropland runoff depth gradually increased from the drier northwest inland region to the wetter southeast coastal region (range: 2–1375 mm yr−1). Regionally, eastern, central and southern China accounted for 39% of the cultivated area and 53% of the irrigated land area and contributed to 68% of the national cropland runoff volume. In contrast, northwestern, northern, southwestern and northeastern China accounted for 61% of the cultivated area and 47% of the irrigated land area and contributed to 32% of the runoff volume. Rainfall was the main source (72%) of cropland runoff for the entire nation, while irrigation became the main source of cropland runoff in drier regions (northwestern and southwestern China). Over the 24-year study period, estimated cropland runoff depth showed no significant trends, whereas cropland runoff volume and irrigation-contributed percentages decreased by 7% and 35%, respectively, owing to implementation of water-saving irrigation technologies. To reduce excessive runoff and increase water utilization efficiencies, regionally specific water management strategies should be further promoted. As the first long-term national estimate of cropland runoff in China, this study provides a simple framework for estimating regional cropland runoff depth and volume, providing critical information for guiding developments of management practices to mitigate agricultural nonpoint source pollution, soil erosion and water scarcity.

Funder

Zhejiang Provincial Key Research and Development Program of China

Zhejiang Provincial Natural Science Foundation

National Natural Science Foundation of China

National Key Research and Development Program of China

Publisher

MDPI AG

Subject

Water Science and Technology,Aquatic Science,Geography, Planning and Development,Biochemistry

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3