A Probabilistic Approach to Assessing and Predicting the Failure of Notched Components

Author:

Muñiz-Calvente MiguelORCID,Venta-Viñuela Lucas,Álvarez-Vázquez Adrián,Fernández Fernández Pelayo,Lamela Rey María Jesús,Fernández Canteli AlfonsoORCID

Abstract

This work presents a probabilistic model to evaluate the strength results obtained from an experimental characterisation program on notched components. The generalised local method (GLM) is applied to the derivation of the primary failure cumulative distribution function (PFCDF) as a material property (i.e., independent of the test type, load conditions and specimen geometry selected for the experimental campaign), which guarantees transferability in component design. To illustrate the applicability of the GLM methodology, an experimental program is performed using specimens of EPOLAM 2025 epoxy resin. Three different samples, each with a specific notch geometry, are tested. As a first scenario, a single assessment of each sample is obtained and the PFCDFs are used to perform cross predictions of failure. Some discrepancies are noticeable among the experimental results and cross-failure predictions, although they are within the expected margins. A possible reason for the disagreement can be assigned to the inherent statistical variability of the results and the limited number of tests per each sample. As a second scenario, a joint assessment of the three samples is performed, from which a unique PFCDF is provided, according to the GLM. In the latter case, a more reliable assessment of the experimental results from the geometry conditions is achieved, the suitability of the selected driving force is verified, and the transferability of the present material characterisation is confirmed.

Publisher

MDPI AG

Subject

General Materials Science

Reference18 articles.

1. Stress Concentration Design Factors;Peterson,1974

2. Stress Concentration Design Factors: Charts and Relations Useful in Making Strength Calculations for Machine Parts and Structural Elements;Peterson,1953

3. Peterson’s Stress Concentration Factors;Pilkey,2008

4. The Theory of Critical Distances as an alternative experimental strategy for the determination of KIc and ΔKth

5. The Theory of Critical Distances: A New Perspective in Fracture Mechanics;Taylor,2007

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3