How Well Do CMIP6 Models Simulate the Greening of the Tibetan Plateau?

Author:

Liu Jiafeng,Lu YaqiongORCID

Abstract

The “warm-humid” climate change across the Tibetan Plateau (TP) has promoted grassland growth and an overall greening trend has been observed by remote sensing products. Many of the current generations of Earth System Models (ESMs) incorporate advanced process-based vegetation growth in the land surface module that can simulate vegetation growth, but the evaluation of their performance has not received much attention, especially over hot spots where projections of the future climate and vegetation growth are greatly needed. In this study, we compare the leaf area index (LAI) simulations of 35 ESMs that participated in CMIP6 to a remote-sensing-derived LAI product (GLASS LAI). The results show that about 40% of the models overestimated the Tibetan Plateau’s greening, 48% of the models underestimated the greening, and 11% of the models showed a declining LAI trend. The CMIP6 models generally produced poor simulations of the spatial distribution of LAI trend, and overestimated the LAI trend of alpine vegetation, grassland, and forest, but underestimated meadow and shrub. Compared with other vegetation types, simulations of the forest LAI trend were the worst, the declining trend in forest pixels on the TP was generally underestimated, and the greening of the meadow was underestimated as well. However, the greening of the grassland, was greatly overestimated. For the Tibetan Plateau’s averaged LAI, more than 70% of the models overestimated this during the growing seasons of 1981–2014. Similar to the forest LAI trend, the performance of the forest LAI simulation was the worst among the different vegetation types, and the forest LAI was underestimated as well.

Funder

the Strategic Priority Research Program of Chinese Academy of Sciences

the National Natural Science Foundation of China

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3