Abstract
Visibility is a complex phenomenon inspired by emissions and air pollutants or by factors, including sunlight, humidity, temperature, and time, which decrease the clarity of what is visible through the atmosphere. This paper provides a detailed overview of the state-of-the-art contributions in relation to visibility estimation under various foggy weather conditions. We propose VisNet, which is a new approach based on deep integrated convolutional neural networks for the estimation of visibility distances from camera imagery. The implemented network uses three streams of deep integrated convolutional neural networks, which are connected in parallel. In addition, we have collected the largest dataset with three million outdoor images and exact visibility values for this study. To evaluate the model’s performance fairly and objectively, the model is trained on three image datasets with different visibility ranges, each with a different number of classes. Moreover, our proposed model, VisNet, evaluated under dissimilar fog density scenarios, uses a diverse set of images. Prior to feeding the network, each input image is filtered in the frequency domain to remove low-level features, and a spectral filter is applied to each input for the extraction of low-contrast regions. Compared to the previous methods, our approach achieves the highest performance in terms of classification based on three different datasets. Furthermore, our VisNet considerably outperforms not only the classical methods, but also state-of-the-art models of visibility estimation.
Subject
Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry
Cited by
52 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献