Pyrogallol-Phloroglucinol-6,6-Bieckolon Attenuates Vascular Smooth Muscle Cell Proliferation and Phenotype Switching in Hyperlipidemia through Modulation of Chemokine Receptor 5

Author:

Oh Seyeon,Son MyeongjooORCID,Park Chul-Hyun,Jang Ji Tae,Son Kuk Hui,Byun Kyunghee

Abstract

Hyperlipidemia induces vascular smooth muscle cell (VSMC) proliferation and phenotype switching from contractile to synthetic. This process is involved in arterial remodeling via the chemokine ligand 5 (CCL5)/chemokine receptor 5 (CCR5) pathway. Arterial remodeling is related to atherosclerosis or intimal hyperplasia. The purpose of this study was to evaluate whether pyrogallol-phloroglucinol-6,6-bieckol (PPB) from E. cava reduces VSMC proliferation and phenotype switching via the CCL5/CCR5 pathway. The CCL5/CCR5 expression, VSMC proliferation and phenotypic alterations were evaluated using a cell model of VSMC exposed in hyperlipidemia, and an animal model of mice fed a high-fat-diet (HFD). The expression of CCL5/CCR5 increased in both the cell and animal models of hyperlipidemia. Treatment with PPB decreased CCL5/CCR5 expression in both models. The expression of contractile markers of VSMCs, including alpha-smooth muscle actin (α-SMA), smooth muscle myosin heavy chain (SM-MHC), and smooth muscle protein 22 alpha (SM22α), were decreased by hyperlipidemia and restored after treatment with PPB. The silencing of CCR5 attenuated the effects of PPB treatment. VSMC proliferation and the intima-media thickness of the aortas, increased with HFD and decreased after treatment with PPB. The VSMC proliferation ratio and messenger ribonucleic acid (mRNA) expression of cell cycle regulatory factors increased in the in vitro model and were restored after treatment with PPB. PPB treatment reduced VSMC proliferation and phenotype switching induced by hyperlipidemia through inhibition of the CCL5/CCR5 pathway.

Funder

Ministry of Oceans and Fisheries

Publisher

MDPI AG

Subject

Drug Discovery,Pharmacology, Toxicology and Pharmaceutics (miscellaneous),Pharmaceutical Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3