Evolution of the Fermi Surface of 1T-VSe2 across a Structural Phase Transition

Author:

Yilmaz Turgut12ORCID,Tong Xiao3ORCID,Sadowski Jerzy T.3ORCID,Hwang Sooyeon3ORCID,Lutterodt Kenneth Evans1,Kisslinger Kim3,Vescovo Elio1ORCID

Affiliation:

1. National Synchrotron Light Source II, Brookhaven National Laboratory, Upton, NY 11973, USA

2. Department of Physics, University of Connecticut, Storrs, CT 06269, USA

3. Center for Functional Nanomaterials, Brookhaven National Laboratory, Upton, NY 11973, USA

Abstract

Periodic lattice distortion, known as the charge density wave, is generally attributed to electron–phonon coupling. This correlation is expected to induce a pseudogap at the Fermi level in order to gain the required energy for stable lattice distortion. The transition metal dichalcogenide 1T-VSe2 also undergoes such a transition at 110 K. Here, we present detailed angle-resolved photoemission spectroscopy experiments to investigate the electronic structure in 1T-VSe2 across the structural transition. Previously reported warping of the electronic structure and the energy shift of a secondary peak near the Fermi level as the origin of the charge density wave phase are shown to be temperature independent and hence cannot be attributed to the structural transition. Our work reveals new states that were not resolved in previous studies. Earlier results can be explained by the different dispersion natures of these states and temperature-induced broadening. Only the overall size of the Fermi surface is found to change across the structural transition. These observations, quite different from the charge density wave scenario commonly considered for 1T-VSe2 and other transition metal dichalcogenides, bring fresh perspectives toward correctly describing structural transitions. Therefore, these new results can be applied to material families in which the origin of the structural transition has not been resolved.

Funder

National Synchrotron Light Source II

Center for Functional Nanomaterials

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3