Decentralized Privacy-Preserving Data Aggregation Scheme for Smart Grid Based on Blockchain

Author:

Fan Hongbin,Liu YiningORCID,Zeng Zhixin

Abstract

As a next-generation power system, the smart grid can implement fine-grained smart metering data collection to optimize energy utilization. Smart meters face serious security challenges, such as a trusted third party or a trusted authority being attacked, which leads to the disclosure of user privacy. Blockchain provides a viable solution that can use its key technologies to solve this problem. Blockchain is a new type of decentralized protocol that does not require a trusted third party or a central authority. Therefore, this paper proposes a decentralized privacy-preserving data aggregation (DPPDA) scheme for smart grid based on blockchain. In this scheme, the leader election algorithm is used to select a smart meter in the residential area as a mining node to build a block. The node adopts Paillier cryptosystem algorithm to aggregate the user’s power consumption data. Boneh-Lynn-Shacham short signature and SHA-256 function are applied to ensure the confidentiality and integrity of user data, which is convenient for billing and power regulation. The scheme protects user privacy data while achieving decentralization, without relying on TTP or CA. Security analysis shows that our scheme meets the security and privacy requirements of smart grid data aggregation. The experimental results show that this scheme is more efficient than existing competing schemes in terms of computation and communication overhead.

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Biochemistry,Instrumentation,Atomic and Molecular Physics, and Optics,Analytical Chemistry

Cited by 44 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3