Molecular Detection of Cordycepin-Induced HeLa Cell Apoptosis with Surface-Enhanced Raman Spectroscopy

Author:

Ma PeiORCID,Xu Lei,Wang Luyao,Chen Nan,Zhang Xuedian,Chen Hui,Li Junying

Abstract

Cordycepin, extracted from the medicinal mushroom Cordyceps militaris, was shown to induce cancer cell apoptosis. Yet its anticancer function was limitedly evaluated, and the mechanism was not entirely elucidated. In this study, we demonstrated the effectiveness of cordycepin in inducing apoptosis in HeLa cells and investigated its apoptosis-inducing mechanism through label-free surface-enhanced Raman spectroscopy (SERS). SERS spectral changes revealed detailed molecular changes in both early and late stages of apoptosis. Importantly, SERS characteristic peaks at 805 and 1438 cm−1, which were assigned to RNA, continued to decrease significantly from early to late apoptosis stages. It indicated that cordycepin induced HeLa cell apoptosis mainly through interfering with RNA production, potentially by restraining the translation of RNA encoding ribosomal proteins. Meanwhile, apoptotic cells and their apoptosis stage could be easily differentiated by SERS-based principal component analysis (PCA). Furthermore, the morphological changes of early and late-stage apoptotic cells were illustrated by differential interference contrast and fluorescence microscopic imaging. Therefore, the natural ingredient, cordycepin, could serve as a promising anticancer candidate. Our biological model of cell apoptosis in vitro, the non-invasive and rapid SERS technique, combined with PCA analysis, could be a powerful tool in the investigation of cell apoptosis mechanisms and anticancer drug screening.

Funder

National Key R&D Program of China

National Natural Science Foundation of China

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3