Power Positioning System Control Study of “Intelligent Research and Internship Vessel” Based on Terminal Sliding Mode

Author:

Wei Zhenghao1ORCID,He Zhibin1,Wu Xiaoyu1ORCID,Zhang Qi1

Affiliation:

1. Marine Engineering College, Dalian Maritime University, Dalian 116026, China

Abstract

As most of the current dynamic positioning systems are based on model ships, they cannot accurately reflect the motion state, position changes, and mutual influence of each part of the dynamic positioning system of actual ships in complex environments. Other actual ships such as cargo ships cannot add various sensors and auxiliary equipment to verify and analyze the positioning system. This article takes the intelligent research and training dual-use ship of Dalian Maritime University, which integrates scientific research and training, as the object of study. This ship will not be affected by the voyage period and route and can choose a suitable sea area for research. Therefore, in order to improve the accuracy and reliability of the dynamic positioning system, research on the ship’s dynamic positioning system was carried out. Firstly, an accurate mathematical model was developed to simulate ship motion, focusing on the use of the Dalian Maritime University’s intelligent and practical training dual-purpose vessel as the modeling object. Through this approach, a more detailed understanding of the effects of actual environmental perturbations on ship control and positioning can be obtained, as well as more realistic ship control and positioning results. The hydrodynamic derivatives of ship model motion were obtained by numerical calculation and applied to the three-degree-of-freedom model of the intelligent research and training dual-use ship. Then, the model was used as part of the closed-loop simulation model of the ship’s dynamic positioning system, and the terminal sliding mode controller was used for simulation and emulation, thereby obtaining ideal simulation test results. Our results deepen the understanding of DPS accuracy and are consistent with the theory of terminal slip modes for ship power positioning control systems. This has implications for improving the accuracy of ship power positioning systems, as previously discussed in previous authors. In conclusion, this study not only improves the accuracy and reliability of the DPS but also proposes the use of the terminal slip film for a ship power positioning control system modeled on the Dalian Maritime University intelligent and practical dual-purpose vessel. These contributions are significant in improving the efficiency, safety, and environmental sustainability of ship operations.

Funder

Ministry of Industry and Information Technology Project: Innovation Project of the Offshore LNG Equipment Industry Chain

Publisher

MDPI AG

Subject

Fluid Flow and Transfer Processes,Computer Science Applications,Process Chemistry and Technology,General Engineering,Instrumentation,General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3