Abstract
Our study reported herein aims to determine whether an electromagnetic field, induced triboelectrically by a metallic cone, rotating at a frequency of 167 Hz, has an effect on the properties of the horseradish peroxidase (HRP) enzyme. Atomic force microscopy (AFM) was employed to detect even the most subtle effects on single enzyme molecules. In parallel, a macroscopic method (spectrophotometry) was used to reveal whether the enzymatic activity of HRP in solution was affected. An aqueous solution of the enzyme was incubated at a distance of 2 cm from the rotating cone. The experiments were performed at various incubation times. The control experiments were performed with a non-rotating cone. The incubation of the HRP solution was found to cause the disaggregation of the enzyme. At longer incubation times, this disaggregation was found to be accompanied by the formation of higher-order aggregates; however, no change in the HRP enzymatic activity was observed. The results of our experiments could be of interest in the development of enzyme-based biosensors with rotating elements such as stirrers. Additionally, the results obtained herein are important for the correct interpretation of data obtained with such biosensors.
Funder
Ministry of Science and Higher Education of the Russian Federation
Subject
Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering