A Protocol for Fabrication and on-Chip Cell Culture to Recreate PAH-Afflicted Pulmonary Artery on a Microfluidic Device

Author:

Sarkar Tanoy,Nguyen TrieuORCID,Moinuddin Sakib M.ORCID,Stenmark Kurt R.ORCID,Nozik Eva S.ORCID,Saha DipongkorORCID,Ahsan FakhrulORCID

Abstract

Pulmonary arterial hypertension (PAH) is a rare pulmonary vascular disease that affects people of all ethnic origins and age groups including newborns. In PAH, pulmonary arteries and arterioles undergo a series of pathological changes including remodeling of the entire pulmonary vasculatures and extracellular matrices, mis-localized growth of pulmonary arterial cells, and development of glomeruloid-like lesions called plexiform lesions. Traditionally, various animal and cellular models have been used to understand PAH pathophysiology, investigate sex-disparity in PAH and monitor therapeutic efficacy of PAH medications. However, traditional models can only partially capture various pathological features of PAH, and they are not adaptable to combinatorial study design for deciphering intricately intertwined complex cellular processes implicated in PAH pathogenesis. While many microfluidic chip-based models are currently available for major diseases, no such disease-on-a-device model is available for PAH, an under investigated disease. In the absence of any chip-based models of PAH, we recently proposed a five-channel polydimethylsiloxane (PDMS)-based microfluidic device that can emulate major pathological features of PAH. However, our proposed model can make a bigger impact on the PAH field only when the larger scientific community engaged in PAH research can fabricate the device and develop the model in their laboratory settings. With this goal in mind, in this study, we have described the detailed methodologies for fabrication and development of the PAH chip model including a thorough explanation of scientific principles for various steps for chip fabrication, a detailed list of reagents, tools and equipment along with their source and catalogue numbers, description of laboratory setup, and cautionary notes. Finally, we explained the methodologies for on-chip cell seeding and application of this model for studying PAH pathophysiology. We believe investigators with little or no training in microfluidic chip fabrication can fabricate this eminently novel PAH-on-a-chip model. As such, this study will have a far-reaching impact on understanding PAH pathophysiology, unravelling the biological mystery associated with sexual dimorphism in PAH, and developing PAH therapy based on patient sex and age.

Funder

National Institute of Health

United States Department of Defense

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Advancements in preclinical human-relevant modeling of pulmonary vasculature on-chip;European Journal of Pharmaceutical Sciences;2024-04

2. Engineering Organ-on-a-Chip Systems for Vascular Diseases;Arteriosclerosis, Thrombosis, and Vascular Biology;2023-12

3. Emerging biologics for the treatment of pulmonary arterial hypertension;Journal of Drug Targeting;2023-04-26

4. Targeting Epigenetics in Pulmonary Arterial Hypertension;Targeting Epigenetics in Inflammatory Lung Diseases;2023

5. An organ-on-chip model of pulmonary arterial hypertension identifies a BMPR2-SOX17-prostacyclin signalling axis;Communications Biology;2022-11-07

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3