Artificial Intelligence Algorithms Enable Automated Characterization of the Positive and Negative Dielectrophoretic Ranges of Applied Frequency

Author:

Michaels MatthewORCID,Yu Shih-Yuan,Zhou Tuo,Du Fangzhou,Al Faruque Mohammad Abdullah,Kulinsky LawrenceORCID

Abstract

The present work describes the phenomenological approach to automatically determine the frequency range for positive and negative dielectrophoresis (DEP)—an electrokinetic force that can be used for massively parallel micro- and nano-assembly. An experimental setup consists of the microfabricated chip with gold microelectrode array connected to a function generator capable of digitally controlling an AC signal of 1 V (peak-to-peak) and of various frequencies in the range between 10 kHz and 1 MHz. The suspension of latex microbeads (3-μm diameter) is either attracted or repelled from the microelectrodes under the influence of DEP force as a function of the applied frequency. The video of the bead movement is captured via a digital camera attached to the microscope. The OpenCV software package is used to digitally analyze the images and identify the beads. Positions of the identified beads are compared for successive frames via Artificial Intelligence (AI) algorithm that determines the cloud behavior of the microbeads and algorithmically determines if the beads experience attraction or repulsion from the electrodes. Based on the determined behavior of the beads, algorithm will either increase or decrease the applied frequency and implement the digital command of the function generator that is controlled by the computer. Thus, the operation of the study platform is fully automated. The AI-guided platform has determined that positive DEP (pDEP) is active below 500 kHz frequency, negative DEP (nDEP) is evidenced above 1 MHz frequency and the crossover frequency is between 500 kHz and 1 MHz. These results are in line with previously published experimentally determined frequency-dependent DEP behavior of the latex microbeads. The phenomenological approach assisted by live AI-guided feedback loop described in the present study will assist the active manipulation of the system towards the desired phenomenological outcome such as, for example, collection of the particles at the electrodes, even if, due to the complexity and plurality of the interactive forces, model-based predictions are not available.

Funder

National Science Foundation

Publisher

MDPI AG

Subject

Electrical and Electronic Engineering,Mechanical Engineering,Control and Systems Engineering

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3