Expansion of Toxic Algal Blooms in Coastal and Marine Areas in the Philippines and Malaysia: Is It Climate Change Related?

Author:

Azanza Rhodora V.1,Yñiguez Aletta T.1ORCID,Onda Deo Florence1ORCID,Benico Garry A.2ORCID,Lim Po Teen3ORCID,Leaw Chui Pin3ORCID,Iwataki Mitsunori4ORCID

Affiliation:

1. The Marine Science Institute, University of the Philippines, Quezon City 1101, Philippines

2. Department of Biological Sciences, College of Science, Central Luzon State University, Science City of Muñoz 3120, Philippines

3. Bachok Marine Research Station, Institute of Ocean and Earth Sciences, University of Malaya, Bachok 16310, Kelantan, Malaysia

4. Graduate School of Agricultural and Life Sciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo, Tokyo 113-8657, Japan

Abstract

This paper provides a review of toxic algal blooms in the Philippine and Malaysian coastal and marine systems, considering relevant available knowledge, including climate change dimension/s in the assessment of their recorded recent expansion. The first record of human toxicity in the Philippines associated with HABs/toxic algal blooms specifically was during the bloom of Pyrodinium bahamense in the Sorsogon, Samar, and Leyte waters in 1983. Since then, the species has been identified to occur and cause blooms in about 44 sites/areas in the country. Recent government reports, i.e., 2021, 2022, and 2023, have also identified other paralytic shellfish poisoning (PSP) causative organisms (Gymnodinium catenatum, Alexandrium spp.) in the country. New records indicate that the presence of PSP causative species has been reported almost year-round in the Philippines. In Malaysia, PSP caused by P. bahamense was initially confined in 1981 to the state of Sabah, Malaysia Borneo, but since then, blooms of this species have been reported almost annually at different scales across the coastal waters of Sabah. P. bahamense and other cyst-forming dinoflagellates could be transported naturally or through human activities. Other eco-physiological and environment factors from the field and the laboratory have been used to study the bloom dynamics and transport of PSP causative species in several areas in the Philippines and Malaysia. More recently, plastics and other marine litter have been considered potential vectors of invasion/transport or expansion of dinoflagellates with other microorganisms. ENSO events have been observed to be stronger since 1950 compared with those recorded from 1850 to 1950. The extreme phases of the ENSO phenomenon have a strong modulating effect based on seasonal rainfall in the Philippines, with extreme ENSO warm events (El Niño) often associated with drought and stresses on water resources and agriculture/aquaculture. In contrast, cold events (La Niña) often result in excessive rainfall. The La Nina Advisories from 2021 to 2023 (18 advisories) showed the persistence of this part of ENSO, particularly in regions with recurrent and new records of HABs/toxic algal blooms. More studies and monitoring of another type of toxic algal bloom, Ciguatera Fish Poisoning (CFP), are recommended in tropical countries such as the Philippines and Malaysia, which have extensive reef areas that harvest and culture marine fish for local and export purposes, as accelerating reports of this type of poisoning have apparently increased and causative organisms have been identified in several areas. There is an urgent need to enhance HAB/toxic algal bloom research and monitoring, particularly those related to climate change, which has apparently impacted these blooms/occurrences directly or indirectly. Local researchers and managers should be made aware of the knowledge and tools already available for their utilization and enhancement to meet local conditions and challenges for potential recurrence and expansion of HABs/toxic algal blooms. Regional and international HAB research and collaboration should be further advanced for the protection of public health and marine resources.

Funder

Philippines was funded by the Department of Science and Technology-Philippine Council for Agriculture and Aquatic Resources Research and Development

National Academy of Science and Technology

Malaysian Government, Ministry of Higher Education HI CoE

Publisher

MDPI AG

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3