Multi-Wavelength Raman Differentiation of Malignant Skin Neoplasms

Author:

Rimskaya Elena1ORCID,Gorevoy Alexey1ORCID,Shelygina Svetlana1ORCID,Perevedentseva Elena1ORCID,Timurzieva Alina12ORCID,Saraeva Irina1ORCID,Melnik Nikolay1ORCID,Kudryashov Sergey1ORCID,Kuchmizhak Aleksandr34ORCID

Affiliation:

1. Lebedev Physical Institute, 119991 Moscow, Russia

2. Semashko National Research Institute of Public Health, 105064 Moscow, Russia

3. Institute of Automation and Control Processes, Far Eastern Branch, Russian Academy of Science, 690041 Vladivostok, Russia

4. Far Eastern Federal University, 690922 Vladivostok, Russia

Abstract

Raman microspectroscopy has become an effective method for analyzing the molecular appearance of biomarkers in skin tissue. For the first time, we acquired in vitro Raman spectra of healthy and malignant skin tissues, including basal cell carcinoma (BCC) and squamous cell carcinoma (SCC), at 532 and 785 nm laser excitation wavelengths in the wavenumber ranges of 900–1800 cm−1 and 2800–3100 cm−1 and analyzed them to find spectral features for differentiation between the three classes of the samples. The intensity ratios of the bands at 1268, 1336, and 1445 cm−1 appeared to be the most reliable criteria for the three-class differentiation at 532 nm excitation, whereas the bands from the higher wavenumber region (2850, 2880, and 2930 cm−1) were a robust measure of the increased protein/lipid ratio in the tumors at both excitation wavelengths. Selecting ratios of the three bands from the merged (532 + 785) dataset made it possible to increase the accuracy to 87% for the three classes and reach the specificities for BCC + SCC equal to 87% and 81% for the sensitivities of 95% and 99%, respectively. Development of multi-wavelength excitation Raman spectroscopic techniques provides a versatile non-invasive tool for research of the processes in malignant skin tumors, as well as other forms of cancer.

Funder

Russian Science Foundation

Publisher

MDPI AG

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3