Abstract
In this paper, we introduce a novel classification framework for hyperspectral images (HSIs) by jointly employing spectral, spatial, and hierarchical structure information. In this framework, the three types of information are integrated into the SVM classifier in a way of multiple kernels. Specifically, the spectral kernel is constructed through each pixel’s vector value in the original HSI, and the spatial kernel is modeled by using the extended morphological profile method due to its simplicity and effectiveness. To accurately characterize hierarchical structure features, the techniques of Fish-Markov selector (FMS), marker-based hierarchical segmentation (MHSEG) and algebraic multigrid (AMG) are combined. First, the FMS algorithm is used on the original HSI for feature selection to produce its spectral subset. Then, the multigrid structure of this subset is constructed using the AMG method. Subsequently, the MHSEG algorithm is exploited to obtain a hierarchy consist of a series of segmentation maps. Finally, the hierarchical structure information is represented by using these segmentation maps. The main contributions of this work is to present an effective composite kernel for HSI classification by utilizing spatial structure information in multiple scales. Experiments were conducted on two hyperspectral remote sensing images to validate that the proposed framework can achieve better classification results than several popular kernel-based classification methods in terms of both qualitative and quantitative analysis. Specifically, the proposed classification framework can achieve 13.46–15.61% in average higher than the standard SVM classifier under different training sets in the terms of overall accuracy.
Subject
General Earth and Planetary Sciences
Cited by
39 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献