The Thermodynamic and Kinetic Effects of Sodium Lignin Sulfonate on Ethylene Hydrate Formation

Author:

Wang Yiwei,Wang Lin,Hu Zhen,Li Youli,Sun Qiang,Liu Aixian,Yang Lanying,Gong Jing,Guo XuqiangORCID

Abstract

Hydrate-based technologies (HBTs) have high potential in many fields. The industrial application of HBTs is limited by the low conversion rate of the water into hydrate (RWH), and sodium lignin sulfonate (SLS) has the potential to solve the above problem. In order to make the HBTs in the presence of SLS applied in industry and promote the advances of commercial HBTs, the effect of SLS on the thermodynamic equilibrium hydrate formation pressure (Peq) was investigated for the first time, and a new model (which can predict the Peq) was proposed to quantitatively describe the thermodynamic effect of SLS on the hydrate formation. Then, the effects of pressure and initial SLS concentration on the hydrate formation rate (rR) at different stages in the process of hydrate formation were investigated for the first time to reveal the kinetic effect of SLS on hydrate formation. The experimental results show that SLS caused little negative thermodynamic effect on hydrate formation. The Peq of the ethylene-SLS solution system predicted by the model proposed in this work matches the experimental data well, with an average relative deviation of 1.6% and a maximum relative deviation of 4.7%. SLS increased RWH: the final RWH increased from 57.6 ± 1.6% to higher than 70.0% by using SLS, and the highest final RWH (77.0 ± 2.1%) was achieved when the initial SLS concentration was 0.1 mass%. The rR did not significantly change as RWH increased from 35% to 65% in the formation process in the presence of SLS. The effect of increasing pressure on increasing rR decreased with the increase in RWH when RWH was lower than 30%, and the difference in pressure led to little difference in the rR when RWH was higher than 30%.

Funder

Natural Science Foundation of Xinjiang Province

National Natural Science Foundation of China

Xinjiang Uygur Autonomous Region Department of Education

Science Foundation of China University of Petroleum, Beijing

Technology Innovation Program of Karamay

Publisher

MDPI AG

Subject

Energy (miscellaneous),Energy Engineering and Power Technology,Renewable Energy, Sustainability and the Environment,Electrical and Electronic Engineering,Control and Optimization,Engineering (miscellaneous)

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3