Author:
Guan Yue,Li Xiaodan,Niu Ruixia,Zhang Ningxia,Hu Taotao,Zhang Liyao
Abstract
First-principle calculations based on the density functional theory (DFT) are implemented to study the structural and electronic properties of the SiS2/WSe2 hetero-bilayers. It is found that the AB-2 stacking model is most stable among all the six SiS2/WSe2 heterostructures considered in this work. The AB-2 stacking SiS2/WSe2 hetero-bilayer possesses a type-II band alignment with a narrow indirect band gap (0.154 eV and 0.738 eV obtained by GGA-PBE and HSE06, respectively), which can effectively separate the photogenerated electron–hole pairs and prevent the recombination of the electron–hole pairs. Our results revealed that the band gap can be tuned effectively within the range of elastic deformation (biaxial strain range from −7% to 7%) while maintaining the type-II band alignment. Furthermore, due to the effective regulation of interlayer charge transfer, the band gap along with the band offset of the SiS2/WSe2 heterostructure can also be modulated effectively by applying a vertical external electric field. Our results offer interesting alternatives for the engineering of two-dimensional material-based optoelectronic nanodevices.
Funder
Fundamental Research Funds for the Central Universities
Subject
General Materials Science,General Chemical Engineering
Cited by
10 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献