Abstract
East Asia has an abundant resource of fragrant japonica rice that is gaining increasing interest among both consumers and producers. However, genomic resources and in particular complete genome sequences currently available for the breeding of fragrant japonica rice are still scarce. Here, integrating Nanopore long-read sequencing, Illumina short-read sequencing, and Hi-C methods, we presented a high-quality chromosome-level genome assembly (~378.78 Mb) for a new fragrant japonica cultivar ‘Changxianggeng 1813’, with 31,671 predicated protein-coding genes. Based on the annotated genome sequence, we demonstrated that it was the badh2-E2 type of deletion (a 7-bp deletion in the second exon) that caused fragrance in ‘Changxianggeng 1813’. Comparative genomic analyses revealed that multiple gene families involved in the abiotic stress response were expanded in the ‘Changxianggeng 1813’ genome, which further supported the previous finding that no generalized loss of abiotic stress tolerance associated with the fragrance phenotype. Although the ‘Changxianggeng 1813’ genome showed high genomic synteny with the genome of the non-fragrant japonica rice cultivar Nipponbare, a total of 289,970 single nucleotide polymorphisms (SNPs), 96,093 small insertion-deletion polymorphisms (InDels), and 8690 large structure variants (SVs, >1000 bp) were identified between them. Together, these genomic resources will be valuable for elucidating the mechanisms underlying economically important traits and have wide-ranging implications for genomics-assisted breeding in fragrant japonica rice.
Funder
Changshu Agricultural Production and Public Service Project
Subject
Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis
Cited by
6 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献