Crystal Structures of the Clostridium botulinum Neurotoxin A6 Cell Binding Domain Alone and in Complex with GD1a Reveal Significant Conformational Flexibility

Author:

Gregory Kyle S.ORCID,Newell Anna R.,Mojanaga Otsile O.,Liu Sai ManORCID,Acharya K. RaviORCID

Abstract

Clostridium botulinum neurotoxin A (BoNT/A) targets the soluble N-ethylmaleimide-sensitive factor attachment protein receptor (SNARE) complex, by cleaving synaptosomal-associated protein of 25 kDa size (SNAP-25). Cleavage of SNAP-25 results in flaccid paralysis due to repression of synaptic transmission at the neuromuscular junction. This activity has been exploited to treat a range of diseases associated with hypersecretion of neurotransmitters, with formulations of BoNT/A commercially available as therapeutics. Generally, BoNT activity is facilitated by three essential domains within the molecule, the cell binding domain (HC), the translocation domain (HN), and the catalytic domain (LC). The HC, which consists of an N-terminal (HCN) and a C-terminal (HCC) subdomain, is responsible for BoNT’s high target specificity where it forms a dual-receptor complex with synaptic vesicle protein 2 (SV2) and a ganglioside receptor on the surface of motor neurons. In this study, we have determined the crystal structure of botulinum neurotoxin A6 cell binding domain (HC/A6) in complex with GD1a and describe the interactions involved in ganglioside binding. We also present a new crystal form of wild type HC/A6 (crystal form II) where a large ‘hinge motion’ between the HCN and HCC subdomains is observed. These structures, along with a comparison to the previously determined wild type crystal structure of HC/A6 (crystal form I), reveals the degree of conformational flexibility exhibited by HC/A6.

Funder

Ipsen

Publisher

MDPI AG

Subject

Inorganic Chemistry,Organic Chemistry,Physical and Theoretical Chemistry,Computer Science Applications,Spectroscopy,Molecular Biology,General Medicine,Catalysis

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3