Estimation of River Discharge Solely from Remote-Sensing Derived Data: An Initial Study Over the Yangtze River

Author:

Sichangi Arthur,Wang Lei,Hu Zhidan

Abstract

A novel approach has been developed to estimating river discharge solely using satellite-derived parameters. The temporal river width observations from Moderate Resolution Imaging Spectroradiometer (MODIS), made at two stream segments a distance apart, are plotted to identify the time lag. The river velocity estimate is then computed using the time lag and distance between the width measurement locations, producing a resultant velocity of 0.96 m/s. The estimated velocity is comparable to that computed from in situ gauge-observed data. An empirical relationship is then utilized to estimate river depth. In addition, the channel condition values published in tables are used to estimate the roughness coefficient. The channel slope is derived from the digital elevation model averaged over a river section approximately 516 km long. Finally, the temporal depth changes is captured by adjusting the estimated depth to the Envisat satellite altimetry -derived water level changes, and river width changes from Landsat ETM+. The newly developed procedure was applied to two river sites for validation. In both cases, the river discharges were estimated with reasonable accuracy (with Nash–Sutcliffe values >0.50). The performance evaluation of discharge estimation using satellite-derived parameters was also analyzed. Since the methodology for estimating discharge is solely dependent on global satellite datasets, it represents a promising technique for use on rivers worldwide.

Publisher

MDPI AG

Subject

General Earth and Planetary Sciences

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3