One-Step Solid-State Synthesis of Ni-Rich Cathode Materials for Lithium-Ion Batteries

Author:

Wang Lifan12,Shi Qinling12,Zhan Chun12,Liu Guicheng34ORCID

Affiliation:

1. State Key Laboratory of Advanced Metallurgy, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

2. Department of Energy Storage Science and Engineering, School of Metallurgical and Ecological Engineering, University of Science and Technology Beijing, Beijing 100083, China

3. School of Energy Power and Mechanical Engineering, North China Electric Power University, Beijing 102206, China

4. Department of Physics, Dongguk University, Seoul 04620, Republic of Korea

Abstract

Ni-rich cathodes are expected to serve as critical materials for high-energy lithium-ion batteries. Increasing the Ni content can effectively improve the energy density but usually leads to more complex synthesis conditions, thus limiting its development. In this work, a simple one-step solid-state process for synthesizing Ni-rich ternary cathode materials NCA (LiNi0.9Co0.05Al0.05O2) was presented, and the synthesis conditions were systematically studied. It was found that the synthesis conditions have a substantial impact on electrochemical performance. Furthermore, the cathode materials produced through a one-step solid-state process exhibited excellent cycling stability, maintaining 97.2% of their capacity after 100 cycles at a rate of 1 C. The results show that a one-step solid-state method can successfully synthesize Ni-rich ternary cathode material, which has great potential for application. Optimizing the synthesis conditions also provides valuable ideas for the commercial synthesis of Ni-rich cathode materials.

Funder

China Postdoctoral Science Foundation

National Natural Science Foundation of China

National Research Foundation of Republic of Korea

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3