The Analysis of Mechanical Properties and Geometric Accuracy in Specimens Printed in Material Jetting Technology

Author:

Majca-Nowak Natalia1ORCID,Pyrzanowski Paweł2ORCID

Affiliation:

1. Łukasiewicz Research Network–Institute of Aviation, al. Krakowska 110/114, 02-256 Warsaw, Poland

2. Institute of Aeronautics and Applied Mechanics, Warsaw University of Technology, Nowowiejska Str. 24, 00-665 Warsaw, Poland

Abstract

The purpose of this research was to analyze polymer materials based on mechanical properties and geometrical parameters, such as the smallest material deviations and the best printing texture after three-dimensional (3D) printing in two methods of Material Jetting technology: PolyJet and MultiJet. This study covers checks for Vero Plus, Rigur, Durus, ABS, and VisiJet M2R-WT materials. Thirty flat specimens were printed both for 0 and 90 raster orientations. Specimen scans were superimposed on the 3D model from CAD software. Each of them was tested, paying attention to the accuracy and the layer thickness effect of printed components. Then, all specimens were subjected to tensile tests. The obtained data—Young’s modulus and Poisson’s ratio—were compared using statistical methods, focusing on the two most important parameters: the isotropy of the printed material in two directions and the characteristics close to linear. It was found that unitary surface deviation with general dimensional accuracy equal to ±0.1 mm was the common feature of printed models. Some small areas had lower accuracy depending on the material and printer device. Rigur material obtained the highest mechanical properties. Dimensional accuracy in Material Jetting technology as a function of layer parameters such as layer thickness and raster orientation was checked. The materials were checked in terms of relative isotropy and linearity. Additionally, similarities and differences between PolyJet and MultiJet methods were covered.

Funder

Łukasiewicz Research Network—Institute of Aviation in Warsaw

Publisher

MDPI AG

Subject

General Materials Science

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3